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Summary. The pruning method developed earlier by one of the authors 
(K.B.) combined with the operator method is shown to yield powerful 
recursive relations for generating functions for dimer statistics and character- 
istic polynomials of cacti graphs and cacti lattices. The method developed is 
applied to linear cacti, Bethe cacti of any length containing rings of any size, 
and cyclic cacti of any length and size. It is shown that exact dimer statistics 
can be done on any cactus lattice. 
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1. Introduction 

A fascinating problem in statistical physics which remains unsolved, in general, 
is the problem of dimer statistics [1]. The problem asks for a combinatorial 
solution to the number of ways of placing k dimers (dumbells) on a lattice 
containing N points, such that any two dimers are placed in a disjoint manner 
(i.e., two dimers do not have a common vertex in the lattice). This problem is 
considered an unsolved combinatorial problem [2], in general, for three-dimen- 
sional lattices. Even for two-dimensional and other lattices only special cases 
have been solved. The problem is not only mathematically intriguing but has 
many important ~tpplications in physics and chemistry. The grand canonical 
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partition function of a lattice gas, the partition function of a system of interact- 
ing ferromagnets (the Ising problem), the kinetics and thermodynamics of 
adsorption of diatomics on surfaces, the enumeration of resonance chemical 
structures, and the stabilities of ionic crystals can all be shown to be related to 
dimer statistics [ 1-8]. 

While the complete dimer-covering problem (number of perfect matchings) 
has been solved for one-dimensional and two-dimensional lattices, a generating 
function for the number of ways of placing k dimers on a lattice of N points has 
not been solved to date, even for all two-dimensional lattices. The number of 
perfect matchings, however, can be obtained using the Pffafian expansion of the 
associated directed lattice [1] as reviewed in [1] or by the transfer matrix 
approach of Onsager [8]. An analytical solution for the complete covering of 
dimers has been obtained by Temperley and Fisher [9] and Kasteleyn [10] for 
square lattices. 

A few mathematicians and graph theorists have obtained the generating 
functions for placing dimers on some graphs. They called these generating 
functions matching polynomials [11, 12]. Hosoya [13] was the first to define and 
use this generating function which he called the Z-counting polynomial. The 
matching polynomials of graphs and lattices are simply generating functions for 
the number of ways in placing disjoint dimers on lattices. The generating 
functions for the number of imperfect matchings (partial dimer coverings) have 
been obtained to date only for a few cases [14-16]. 

The matching polynomials and related polynomials of graphs of chemical 
interest have been obtained by many authors [16-29, 35, 36]. A computer code 
in Pascal has been developed to obtain matching polynomials of graphs [20]. 
Although there have been many such developments, applications to lattices lead 
to combinatorial explosions making these cases extremely challenging. 

We show in the present investigation that analytical solutions for exact lattice 
statistics on linear, branched, cyclic and Bethe cacti lattices can easily be 
obtained by using a combination of the tree pruning method developed by one 
of the authors (K.B.) [27] and the operator methods [ 19]. Fisher and Essam [30] 
defined Bethe lattices and used them for percolation and cluster size problems. 
Subsequently, analytical expressions for some special cases of Bethe lattices [31] 
have been obtained. More recently the pruning methods have been developed for 
all Bethe isotropic and non-isotropic lattices [27]. 

A cactus lattice was defined by Uhlenbeck and Ford [32], and Husimi [33]. 
A cactus is a connected lattice in which no edge is shared by more than one cyclic 
subunit-of the lattice. Farrell [34] very recently considered hexagonal cacti and 
obtained expressions for their matching polynomials. No general methods for 
deriving recursive relations and matching polynomials of cacti of any kind 
(branched, cyclic, crowned, etc.) containing rings of any size have been obtained 
to date. In this investigation, we combine the pruning method [27] with the 
operator technique [19] to derive general recursive relations for any cactus. 

Section 2 outlines the pruning method and operator techniques for the 
characteristic polynomials and matching polynomials of cacti lattices. Section 3 
comprises various applications of the operator and pruning methods. Sections 
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3.1 and 3.2 discuss the characteristic polynomials of cyclic and Bethe cacti, 
respectively. Sections 3.3, 3.4 and 3.5 consist of applications of the developed 
methods to matching polynomials of cacti, cyclic cacti lattices and Bethe cacti 
lattices. Section 3.6 describes the relationship between the characteristic and 
matching polynomials of cyclic cacti. 

2. Pruning method and operator technique 

2.1. Definitions and preliminaries 

The adjacency matrix A of a graph is defined as a matrix in which an 
off-diagonal element is unity if the corresponding vertices are connected; other- 
wise it is zero. The secular determinant I XI - A I where ! is the N x N identity 
matrix (N = number of vertices) is called the characteristic polynomial. The 
matching polynomial, MG (x) of a graph is defined as 

Mr(x) = ~ ( -  1)kp(G, k)x N-2k, (1) 
k = 0  

where p(G, k) is the number of ways of placing k disjoint dimers in the graph G 
and m is the maximum number of dimers which can be placed on the lattice. 

2.2. Pruning method 

The pruning method was developed by one of the authors (K.B.) [27] for 
deriving characteristic or matching polynomials of trees. In this method, the 
given tree is pruned at various branch points successively until the final tree is 
simply a path. Then it was shown that the characteristic polynomial of the 
original tree can be synthesized in terms of the characteristic polynomials of the 
pruned tree and the fragments resulting in the process of pruning. Later this 
method was extended to graphs composed of cycles and branching ligands [37]. 

Figure 1 shows a simple square cactus containing five rings. The vertices at 
which two rings meet can be called the pruning points. The graphs should be 
pruned at these points successively. One of the authors (K.B.) [38] recently called 

Fig. 1. A square cactus graph 
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such graphs spirographs and applied the pruning method to obtain characteristic 
polynomials, although no general analytical expression could be obtained for all 
graphs. In general, let S be called the core skeleton, and the branches (or ligands) 
be denoted by the set {Li }. Then the parent graph G is given as the root-to-root 
product of S and the ligands, where root-to-root product was defined and 
illustrated in considerable detail by one of the authors (K.B.) in [41]. Symboli- 
cally, G can be expressed as S u {L; } where both S and the L~ s need not be trees. 
The present method is applicable for any graph G as long as G can be expressed 
in the above form. The junction of L; and S may be called the pivot point and 
denoted as Pt. Let M; be defined as Li eP,., where E) means removal of  the vertex 
Pi and all the edges incident to pi (see Fig. 2) [18]. Let the characteristic 
polynomials of Li and Mt be denoted as _L~ and _M;, respectively. If  the adjacency 
matrix of  S is denoted by Ao., then the characteristic polynomial of  the unpruned 
cactus, G, is the determinant of  H given by 

I Li if i = j a n d  i = p i  

if i = j  and i #P t  (2) 

Hu = I - A i j M _  t if i # j  and i =p~ 

L --A;j - if i :~j and i ~Pi .  

To illustrate the pruning method consider Fig. 2 (Fig. 1 is a special case of 
Fig. 2). Upon application of this method the characteristic polynomial of the 
cactus in Fig. 2 can be verified to be given by 

PG(x) = x 16 - -  20X 14 + 1 4 4 X 1 2  - -  464x 1~ + 640x8 - 256x6. (3) 

Although the above method can be used to generate the characteristic 
polynomials of various cacti and spirographs, it does not provide a closed 
analytical expression for the characteristic polynomials of cacti as a function of 
size. The operator technique described below achieves this. 

Fig. 2. The fragments L 1 , L 2, L 3, L 4, M1, M2, 
M3, M4 obtained in pruning a general square 
cactus graph (see expression (7)) 
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2.3. Operator technique 

Hosoya and Ohkami [ 19] as well as Hosoya and Motoyama [16] have developed 
operator techniques for deriving recursive relations for characteristic and match- 
ing polynomials of graphs. We combine this technique with the pruning method 
to derive recursive expressions for various polynomials. 

Let the set {Ci} be a series of periodic graphs composed of a root Co with 
repetitive units (Cis) such that 

C n = C n + l O C ( n < ~ O  ) or  C . + I = C . O ) C ,  (4) 

where @ operation is the opposite of ~ operation defined before. Let O be a 
step-up operator for the characteristic polynomials of C; s. That is, O acts on C. 
to yield C. + 1- To illustrate, consider a linear square cactus and the various Cf s 
shown in Fig. 3. 

Given a set of simultaneous recursive equations for the characteristic (or 
matching) polynomials for a family of graphs {A. }, {Bn }, etc., which are derived 
from the same parent graph, 

(aloA,, + aliA,,_ 1 " t -  " �9 �9 "Jr- alkA n --k) 

+ (bloB. + bllB,,_ 1 +" "" + b~kB.-k) + . . . .  0 

(a20A, + a21 An - 1 +" " " "}- a2kA,_ k) 

+ (b20B. + bzlB. -  1 + " "  + b2kBn-k) + . . . .  0 (5) 

(the number of the series of graphs and the number of the independent recursive 
equations should be the same), then by the use of O, the necessary condition for 
the existence of non-trivial solutions is as follows: 

aloOk + a l l O k - - l  + �9 " ' + a l k  bloOk + b l l O k - l  + ' " + b l k  . . .  
= 0 (6)  

azoOk +a21Ok--l + ' ' '  +aEk b2oOk +bE10k- l  + " " ' + b E g ' ' '  

�9 ~ ~ 

The resultant operator polynomial, which is given by 

C o O l +  Cl O l -  I "~- C2 O l -  2 "at-''' "~ C l = 0, (7) 

gives the recursive relation for the individual species of graphs {F,} 
(F = A, B . . . .  ) as shown below: 

CoF. + C, F,,_ I + " "  + C,F,,_ t = 0. (8) 

Upon application of the operator technique to the pruning method for Pc (x) of 

C O C C I C2 
Fig. 3. The cacti graphs Co, C, Cl, C2, etc., in 
expression (9) 
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Cn 
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2n 2 

2n.1 1 
Fig. 4. The cacti which represent C., D. and 
S. + 1 for a linear square cactus 

linear square cacti (see Fig. 4), one obtains 

{_C. - (x 3 - 2x)_(7. -1 } + 2xZ_D._ 2 = 0 

- xZ_C._ 1 + {_D._ l + 2x-D.- 2} = 0. 

The above expression can be expressed in terms of  the operator  0 as 

{0  2 - (x 3 - 2 x ) 0 } C . _  2 + 2xZ-D.-:  = 0 
(9) 

- x20C-.- a + {O + 2x}_D._ 2 = 0. 

In order for _Cn_ 2 and D . _  2 to be non-trivial, the associated determinant of  the 
coefficients should be zero. Consequently, 

0 { 0  2 - (x 3 - 4x)O + 4x 2} = 0. (10) 

This in turn yields 

C n - -  ( x  3 - -  4x)_C. _ 1 ~-  4x2C-n - 2 = 0 .  ( 1 1 )  

Note that this equation suggests one of  the sufficient conditions. The following 
relation also holds for D.  s: 

_D. - (x 3 - 4x)D_._ 1 "q- 4xZ-D.- 2 = 0. (12) 

In Table 1, we give the results for other linear and kinked cacti. 
We could obtain a general expression for the characteristic polynomial o f  

linear cactus as shown below: 

Cn(x) = k=o ~ (--1)k2k (2n + l -- k ) xan+ l - (13) 

The C.(x) can also be shown to be related to the Chebyshev polynomials for the 
path  graph as follows (see also Fig. 4): 

3n+ I 
C.(W/r2x) = 2  2 x"Sz~+,(x), (14) 

where S. is a Chebyshev polynomial,  given by [39] 

an(X) = E ( - 1 )  k xn--2k" ( 1 5 )  

k = 0  
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Table 1. Recursive relations for the characteristic polynomials of  linear and 
kinked cacti 

321 

Cactus type a Characteristic polynomials 

C, = ( x 2 - 2 ) C ~ _  1 - ( x  + 1)2C,_2 

C, = (x3 - 4x)C, _ 1 -  4x2C,_ 2 

C n = ( x 3 -  3x)Cn_ 1 - x 4 C n _ 2  

Cn = ( x4 -- 5X2 + 2)On - 1 -- ( X2 + x i |)2On _ 2 

C, = (x 4 - 4x 2 + 2)C,_ 1 - (x - 1)2(x 2 + x - 1)2C,_ 2 

Cn = x(x 2 - 1)(x 2 - 5)6", _ 1 - 4( x2 - 1)C, - 2  

Cn = ( x5 -- 6X3 "~- 6X)Cn - l -- x2( X2 - 1)2Cn -- 2 

Cn = ( x5 -- 5X3 -1- 5x)Cn- 1 - -  ( X2 - -  1 )2(  X2 - -  2 ) 2 C n -  2 

a See Fig. 5 for cactus types (1) - (8)  

, O O  
X3(D(30::I 

. . . [ ~ ~ i . . .  ,3 " ' . . . ~ . . .  7 

Fig. 5. Linear and kinked cacti containing cycles of  varied sizes. For  the characteristic and matching 
polynomials of  these cacti see Tables I and 2, respectively 

3. Applications 

W e  c o n s i d e r  in  t h i s  s e c t i o n  cyc l i c  c a c t i  o f  m a n y  k i n d s ,  B e t h e  c a c t i  ( b r a n c h e d )  a n d  

o t h e r  cac t i .  

3.1. C h a r a c t e r i s t i c  p o l y n o m i a l s  o f  cyc l i c  cac t i  

T h e r e  a r e  t w o  d i f f e r e n t  t y p e s  i n  cyc l i c  c a c t i  a s  in  F i g .  6. L e t  u s  f i r s t  c o n s i d e r  t h e  

t y p e  in  F i g .  6a  w i t h  t h e  f r a g m e n t s  _L a n d  M .  I f  L a n d  M d e n o t e  t h e  c h a r a c t e r i s t i c  

\ / 

Fig. 6. Two types of  cyclic cacti lattices 
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polynomials of these fragments, then the characteristic polynomial of the cactus 
in Fig. 6a is given as an n x n determinant shown below: 

G,, = M "  

L_/M_ - 1 0 . . . .  1 

- -  1 L_/M_ - 1 . . .  

0 -- 1 L/M_ . . . .  1 

�9 . .  L_IM_ 
- 1  . . . .  1 

= M_"C_.(L_IM_) = M " { L . ( L I M )  - L._ 2(L_IM_) - 2}, (16) 

where _C. and _L. are the characteristic polynomials of cycle graph C. and path 
graph L. ,  respectively. 

For the type in Fig. 6b, one can derive the recursive relations for the 
characteristic polynomials of cyclic cacti as follows. As explained in detail in [ 19], 
the recursive relation of  the characteristic polynomial obtained by deleting an 
edge within a cycle carries extra terms to be added to the main terms correspond- 
ing to the matching polynomial. We need to find all the possible detour paths {~} 
connecting the two ends of  the pivot edge l and subtract the contributions 
2X, oer,.. 

Thus the characterist ic  polynomial R. of the graph in Fig. fib is decomposed 
into 

R . = S . _ I - x E n _ 3 - 2 E . _ 3  

[ - - 2 x  x " - l + ( n - - 1 ) x " - 2 +  2 

= S. _1 - (x + 2)E. _ 3 - 2 x ( x  + 1)" - 1. (17) 

The cyclic subgraph S. can also be decomposed into 

S n = D .  - D . _ , - 2 ( x  + 1)". (18) 

This can in turn be simplified as 

R. - ( x +  1)n._ 1 = D ~ _ l - ( X + 2 ) O . _ E + ( X + l ) O n _ 3  

-- (x  + 2)En_ 3 + (x2 + 2 x  + 3)En_4 . (19) 

We can easily show by following the procedure explained for the linear 
square cacti that C., D. and E.  obey the recursive relation, 

f ( O ,  x)G,, = O, a = C, D,  E,  (20) 

where 

f ( O ,  x) = 0 2 - (x 2 - 2)0 + (x + 1) 2 (see Table 1). (21) 

The left-hand side of Eq. (17) can be expressed as { O -  (x + 1)}R._I,  while 
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each term in the right-hand side obeys Eq. (20). Thus one obtains 

{ 0  -- (x + 1 ) } f (O ,  x)R.  = { 0  - (x + 1 ) } { 0  2 - (x 2 - 2 ) 0  + (x + 1) 2} 

= 0 3 - ( x  2 + x -  1)0 2 -  (x 2 + x -  1) 

x (x + 1)0 - (x + 1) 3 = 0. (22) 

Hence we have 

R . = ( x 2 + x - 1 ) R . _ l - ( X 2 + X - 1 ) ( x + l ) R . _ z + ( x + l ) 3 R . _ 3 .  (23) 

Similarly for the characteristic polynomial of cyclic tetragonal cacti we get 

(0  - x2){O - (x 3 - 3x)O + x 4} = 0 3 - (x 3 + x 2 - 3x)0  2 

-I" (X 5 "Jr- X 4 - -  3 x 3 ) O  - -  X 6 = 0. (24) 

3.2. Characteristic polynomials o f  Bethe cacti 

The pruning-operator method could also be applied to Bethe cacti. Consider the 
Bethe cactus in Fig. 7 as an example. The recursive relation for the characteristic 
polynomials of  a square Bethe cactus (see Fig. 7) is given by 

C. +1 = DE( D2 - 4e]) ;  D.  + l = D.  {x(D2. - 2E 2) - 2 D . E .  }; 

En +1 = On( D2 - 2 E 2 )  �9 (25 )  

For  a triangular Bethe cactus (Fig. 8), the recursive relations are as follows: 

(;'.+1 = D 3 - 3 E 2 D .  - 2E3; D,,+I = x ( D  2 - E2.) - 2 E . ( D .  + E,,); 

E. +1 = D2 - E2- (26) 

Similar recursive relations could be obtained for any Bethe cactus. 

n C n Dn En 

2+ 
3+ Fig. 7. Square Bethe cacti and 

subgraphs. C2 represents the 
associated edge-weighted directed 
graph. Arrows in C 2 represent 
imaginary weights (see Sect. 3.3) 
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n Cn Dn En 

, A A 

Fig. 8. Trigonal Bethe cacti and subgraphs. C2 represents the associated edge-weighted directed 
graph. Arrows as for Fig. 7 

3.3. Matching polynomials of cacti 

Hosoya and Balasubramanian [29] have recently developed computational al- 
gorithms to obtain matching polynomials of graphs from the characteristic 
polynomials of associated edge-weighted directed graphs. In this section we show 
that when the pruning-operator method is applied to weighted cacti (some of the 
weights being imaginary numbers) one obtains the matching polynomials. To our 
knowledge, up to now no general technique such as this has been obtained for 
the matching polynomials of cacti. 

Consider the linear square cactus shown in Fig. 4 as a starting example. An 
edge from each ring is chosen in the cactus and is weighted. This is shown in Fig. 
9 with an arrow. The arrow indicates a weight of + i in the direction of the arrow 
and a weight of - i in the opposite direction so that the adjacency matrix of the 
resulting graph is Hermitian. We have shown before that the introduction of 
weights of + i  for each ring quenches its cyclic contribution [29]. Thus the 
characteristic polynomial of the resulting edge-weighted graph is the matching 
polynomial. 

Cn 

2 

4 

Dn 

2 

3 

Fig. 9. Edge-weighted directed 
graph associated with a linear 
square cactus 
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The pruning-operator method can be applied to weighted and directed graphs 
as well. The application of  this method for the linear square cactus yields the 
following relations: 

C. = (x 3 - 4x)C. - - 1  - -  2xa-C. - z, 
(27) 

-On = ( x 3  - -  4 X ) - O n -  1 - -  2 X 2 - O n - 2 "  

For convenience we express the above recursive relation in terms of  an operator 
polynomial as 

riO,  x) = 0 z - (x 3 - 4x)O + 2x z. (28) 

Note that the above method could be applied to any cactus. Similar recursive 
relations can be obtained for other linear cacti as well as kinked cacti. Table 2 
shows recursive relations for many linear and kinked cacti lattices. 

3.4. Matching polynomials of  cyclic cacti lattices 

The pruning-operator method can also be applied to cyclic cacti lattices contain- 
ing cycles of  any length. Consider the cyclic square cactus shown in Fig. 10 as 
an example. Let Rn be a cyclic square cactus and D~, E,  be defined as shown in 
Fig. 10. _Rn, _D~ and _E~ are the characteristic polynomials of  the corresponding 

Table 2. Recurs ive  re la t ions  fo r  the  m a t c h i n g  p o l y n o m i a l s  o f  l inear  a n d  cycl ic  cac t i  

C a c t u s  type  a M a t c h i n g  p o l y n o m i a l  

1 C~ = ( x 2 - - 2 ) C ~ _ l - - ( x 2 +  1)C~_ 2 

2 (7. = (x 3 - 4 x ) C ~ _  l - 2x2Cn  - 2  

3 C~ = (x 3 - 3x )C~_  1 - -  ( X 4  - -  2x2 + 2 ) 6 ' . - 2  

4 C .  = (x 4 - 5x  2 + 2 ) (7 ._  1 - ( x 4  - x2  + I)C~ - 2  

5 C n = ( x 4 -  4xZ-P 2 ) C n _  1 - - ( x 6 - - 4 x 4 q - 4 x 2 +  1)Cn_  2 

6 C,, = x ( x  2 - 1)(x 2 - 5 )C  n _ 1 - 2( x2  - 1)2Cn - 2 

7 C .  = (x  s - 6 x  3 q- 6 x ) C  n _ 1 - -  ( X 6  - 4x4 -b 5x2)Cn  - 2  

8 Cn = ( x5  - 5x3 + 5x)Cn  - 1 - ( x8  - 6x6  + 1 I x  4 - 6 x  2 + 2 ) C  n _ 2 

a See Fig .  5 fo r  c ac tu s  types  ( 1 ) - ( 8 )  

\ J 

Rn 

Fig.  10. The  g r a p h s  R . ,  D n a n d  E .  a p p e a r i n g  in the  recurs ive  re la t ion  fo r  cycl ic  cac t i  (see (30)) 
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edge-weighted cacti. Then using the known recursive relation [ 13, 40] the matching 
polynomial of  a cyclic spirograph can simply be expressed as 

_R. = 2_D. - x_E._ 2, (29) 

where a point joining two squares was chosen as the pivot vertex. For D. and En 
we use the characteristic polynomials of the associated edge-weighted graphs for 
deriving the relations among the matching polynomials. The final relation is given 
by 

R. + x_E._2-- 2_D. = 0 , 

E_._ 1 + 2 x E - . - z  --  xZO-n- 1 ----" O, (30) 

f (O,  x)D_. = O. 

It was found that this is also the case with the linear and cyclic cacti composed 
of polygons of any size, contrary to the observation by Farrell for hexagonal cacti 
[34]. These relationships were used to obtain the actual matching polynomials of 
many cacti up to octagonal cacti; numerical results can be obtained from the 
authors. This means that the operator polynomial for _R~ might be f ( 6 ,  x) or 
(6  + 2x)f(6,  x). By using expressions for _R1, _R2 and _R3 it was found that f ( 6 ,  x) 
is also applicable to _R~, namely, 

_R. = (x 3 - 4x)_R._ 1 - -  2x2-R.-2. (31) 

Consider as the next example the cacti in Fig. 11, where the mode of  joining 
the squares is different from the case in Fig. 10. For these the pruning-operator 
method yields the following recursive relations: 

_S. = 2T._ 1 - x_U._2, 

T. = (x 2 - 1)-Vn -- xTn - 1, 

_U. = (x 2 - 1)_1". - xU,,--l, (32) 

f (O ,  x)V_,, = 0 ,  

f (O ,  x) = 0 2 -- (x 3 -- 3x)O + (x 2 -- 2x z + 2). 

Also in this case, the f (O ,  x) is found to be applied to _S., together with _T. and 
u.. 

Un I ~ "  

Sn Vn 11 Fig. 11. The graphs Sn, T,,, U,, 
and Vn (see expression (32)) 
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3.5. Match ing  polynomials  o f  Be the  cactus lattice 

A Bethe cactus lattice can be obtained by replacing each vertex of an ordinary 
Bethe lattice tree as defined by Fisher and Essam by a cyclic graph. An example 
of a Bethe cactus lattice is shown in Fig. 7. The matching polynomial of a Bethe 
cactus lattice can again be obtained using the pruning-operator method by 
weighting one edge of each cycle in the lattice by _ i such that the adjacency 
matrix of the weighted lattice is Hermitian. Figure 7 defines the various frag- 
ments C~, Dn, E n (n --- 1, 2, 3, . . .) of a square Bethe lattice. Application of the 
pruning method to the associated edge-weighted directed graphs of Bethe lattice 
yields 

C,,+1 . . . .  (DE 2E,,)22-- 2E.,4" D.+~ =xD, , (D]- -2EZ. , )  2E.(DZ., E,,),2 " 

E, +I = Dn( D2 -- 2E2). (33) 

It can easily be shown that the number of perfect matchings of C, is given by 

C.(const. coef) = 2 (3n -  1)/2 (34) 

For the triangular Bethe cactus, define the various fragments with edge weights 
as in Fig. 12. Then one obtains the matching polynomial of the lattice asfollows: 

C.+1 = D,,(DZn - 3EnZ); On+ 1 = x ( D  2 -- Ez.) -- 2D,,E,,; 

e . + l  = 0 .2  - ( 3 5 )  

r 

+ +  

Fig. 12. Pairs of associated edge-weighted graphs 
whose characteristic polynomials give the matching 
polynomial 
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3.6. Relation between the characteristic polynomials and matching 
polynomials of cyclic cacti 

We have already obtained the recursive relations of  both the characteristic and 
matching polynomials of  cyclic cacti in Sects. 3.1 and 3.4. In [29] we showed that 
contrary to the case of  linear and kinked cacti, the matching polynomials of  
certain types of  polycyclic graphs can be expressed as the mean of  the character- 
istic polynomials of  a set of  edge-weighted directed graphs associated with the 
parent polycyclic graphs. As the numbers of  vertices and cycles of  graphs 
increase, the number  of  steps for obtaining the matching polynomials increases 
exponentially. Thus it is worth presenting the rigorous expressions of  the M e  (x) 
as linear combinations of  the characteristic polynomials of  edge-weighted di- 
rected graphs. 

The results obtained for the cyclic triangular cacti are given in Fig. 12. These 
indicate that for each of  the four cyclic triangular cacti Mo (x) is obtained as the 
mean of  the characteristic polynomials of  the pair of  associated edge-weighted 
directed graphs (Fig. 12a,b), where the arrow represents what has been explained 
in Sect. 3.3 and Fig. 9. In line with these pairs of  graphs, one can continue to 
draw a pair of  edge-weighted graphs for larger cyclic cacti of  any size. One can 
also prove this algorithm inductively by following the procedure explained in 
[29]. Further, it is straightforward to show that the same method can be applied 
to other cyclic cacti composed of  larger cycles. 
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